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Unusual states in the Heisenberg model with competing 
interactions 
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ul. Kosygina 2, USSR 

Received 31 May 1989, in final form 8 November 1989 

Abstract. A phase diagram of the anisotropic Heisenberg model with competition between 
the nearest and the next-to-nearest neighbour exchange interactions is investigated by using 
thc bosonisation scheme. An instability leading to a spontaneous dimerisation is found. The 
new 'superfluid' phases with both non-zero, though non-nominal, Z-magnetisation and 
broken symmetry in the XY-plane are detected in the anisotropic case. 

1. Introduction 

In the past few years there has been a considerable interest in the study of quantum 
fluctuations in spin chains. This interest was to a great extent initiated by the intriguing 
conjecture made by Haldane [l] that the ground-state properties of isotropic (collinear) 
Heisenberg antiferromagnets depend crucially on the parity of 2s:  for half-integer S the 
T = 0 behaviour was predicted to be critical and coincides with that in the integrable 
case of S = 1, while for integer S quantum fluctuations were predicted to destroy not 
only long-range but also orientational order thus leading to a singlet ground state with 
a gap immediately above it. This conjecture was later confirmed by a large number of 
analytical [2-6] and numerical [7-111 calculations. 

The subject of this paper is the role of quantum effects in one-dimensional versions of 
non-collinear magnets, that is in helical configurations arising as a result of a competition 
between the nearest and next-to-nearest neighbour exchange interactions. The possi- 
bility of obtaining new effects due to fluctuations in the case of non-collinear spin 
ordering follows from the particular features of the order parameter space which is 
isomorphic not to a two-dimensional (2D) sphere Sz, as in the collinear case, but to the 
projective space P3 or, equivalently, to the surface of a three-dimensional sphere with 
diametrically opposite points identified. In the 2D case the importance of this difference 
was clarified by Kawamura and Miyashita [12]. They claimed that the existence of 
the non-zero first homotopy group for P3 ( n , ( P , )  = Z,) leads to the possibility of 
a topological phase transition in isotropic two-dimensional systems in spite of the 
exponential decay of two-point correlation functions at any finite temperature. The low- 
and high-temperature phases differ in the structure of the vortex-like excitations and by 
analogy with the famous Kosterlitz-Thouless mechanism the transition may be regarded 
as a dissociation of bounded vortex pairs. Based on the usual analogy between tem- 
perature fluctuations in two dimensions and quantum fluctuations in one dimension, it 
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is reasonable to propose the existence of an ‘ordered’ zero-temperature phase in the ID 
version of non-collinear magnets, the two-valuedness of the 2, group implies that the 
order parameter, if it really exists, is of Ising type. 

A further discussion demands a particular spin Hamiltonian to be chosen, which will 
be taken in the following form with a positive value of /3: 

where 

hl,,+l = Sfsf+, + SySy+, + AStS!+1. 

We begin with the isotropic case ( A  = 1). According to the classical description, the 
NCel state is stable for /3 < 4, while for higher values of /3 the ground state is realised in 
helical the configuration with cos Q = - 1/4/3. 

In both cases classical excitations contain relativistic Goldstone modes at K = 0 and 
n in the antiferromagnetic phase, and at K = 0 and ? Q in the helical phase. The critical 
point /3 = 2 is characterised by an additional softening: the spectrum 

V L  COS k &k = 2S{[1 - /3(1 - V2k)I2 - V k }  2 112 

contains two soft modes, both quadratic in k. 
A calculation of quantum fluctuations changes this simple picture. In addition to the 

usual smearing of the site magnetisation which is peculiar to any ID system with a 
continuous symmetry and holds for all /3, it was proved in a number of papers [l-61 that 
quantum fluctuations also lead to a logarithmic renormalisation of the coupling constant 
g in the antiferromagnetic phase and generate the inner scale R, - e-2n’g below which 
perturbation theory is invalid. A low-energy theory is given by the O(3) a-model 
with coupling g = 2/s(  1 - 4/3)’12 and topological &term with 8 = 2nS. The last term is 
responsible for the above-mentioned difference between integer and half-integer S. 

One rigorous result is also known for /3 > 4: in the case when /3 = 4 the exact ground 
state of the S = i model was proved to be twofold degenerate and to consist of non- 
interacting dimers, that is the ground-state wavefunctions for a ring with an even 
number of spins are ql = [12] [34] [56] . . . and q2 = [23] [45] . . . where [12] is a singlet 
configuration of nearest neighbours: 

This ground state corresponds to a broken translational symmetry. The fundamental 
excitations are S = 4 solitons and soliton-antisoliton bound states [14,15]. Affleck er a1 
[16] have proved that all the excitations have a finite energy gap. 

The situation for arbitrary /3 > 4 (or, better, for /3 > Bc)  since the fluctuations shift 
the critical point) was first considered by Haldane for a model with S = i [ 151. He pointed 
out the mechanism leading to dimerisation and obtained the renormalisation group 
equations favouring the realisation of the dimer state for all /3 > 0,. This result was later 
repeated in [ 171. 

One of the aims of the present paper is to confirm Haldane’s proposal by using an 
independent bosonisation scheme. This is done in section 2. We have found that for 
arbitrary S the instability against helical ordering is accompanied by an instability against 
spontaneous dimerisation and only the dimer configuration is stable below the critical 
point. 
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Figure 1. The classical phase diagram of the spin Hamiltonian (1) on the (/3, A) plane. The 
ground state can be realised in five different phases: the Ising-like ferromagnet, to the left 
of the line AD; the helical state, between the lines BCD and EGL; the XY-like anti- 
ferromagnet, between the lines AF and BE; an king antiferromagnet, to the right of the line 
GEF; and the phase with the up-up-down-down spin configuration, to the right of the line 
LGH. The location of the line ACD is given by (17), the locations of the iines LG and EG 
are A, = (1 + 8/3*)/8/3* and A, = (1 + 8/32)/8/3(1 - /3), respectively. The first-order tran- 
sition line G H  corresponds to /3 = 6 .  

The general phase diagram of (1) in the ( p ,  A )  plane is also of considerable interest 
since the order parameter symmetry in a planar helical Configuration again differs from 
that in the usual XY-antiferromagnet now due to the presence of the additional Z,- 
degree of freedom, chirality. This distinguishes left- and right-twisted helicoids. The 
classical phase diagram is presented in figure 1 and consists of five phases: the Ising-like 
ferromagnetic state, to the left of line AD; the helicoidal state, between the lines BCD 
and EGL; the XY-like antiferromagnetic state, between the lines AF and BE; the Ising- 
like antiferromagnetic state, below the line EGH; and at least, the phase with the u p  
updown-down spin configuration, to the right of the line LGH. One can expect the 
phase diagram to be seriously affected by fluctuations only in the vicinity of A = 1, since 
fluctuations in anisotropic systems are believed not to be too strong and, in particular, 
not to wash away orientational ordering in XY-type systems. However, the analysis 
given below in section 3 shows that in one dimension the classical phase diagram changes 
considerably in the presence of quantum fluctuations not only in the vicinity of the A = 
1 line, but also for all A > - 1: the dimer phase stretchesup to A = -4for A < 0 and up to 
infinity for A > 0, and, in addition, new phases which we call ‘superfluid’ ferromagnetic 
appear for arbitrary S ,  at least in the vicinity of the line AD. These phases arise due to 
the decoupling of the set of ordered states for planar helical or XY antiferromagnetic 
configurations and have non-zero, though non-nominal, 2-magnetisation together with 
the broken symmetry in the XY-plane. Moreover, these phases are not only one- 
dimensional phenomena, they definitely exist even in three dimensions. 

The organisation of this paper is as follows: section 2 is devoted to the ID isotropic 
model (1). By applying the bosonisation scheme at p = pc it will be proved, firstly, that 
this point is a critical one independent of the parity of 2S and, secondly, that p = p, is 
also a lability point against spontaneous dimerisation. The application of this scheme 



4458 A V Chubukov 

below the critical point allows a demonstration that the dimer state is the only stable 
state for /3 > Pc. The anisotropic S = f model in one dimension is discussed in section 3. 
The new ‘superfluid’ ferromagnetic phases are identified and proposals are made about 
the general form of a phase diagram in the ( p ,  A )  plane. 

An extension of the above analysis to S > f and to higher spatial dimensions is 
presented in sections 4 and 5, respectively. The main results of the paper are summarised 
in section 6. Some technical aspects are transferred to appendices 1-3. 

2. The isotropic case (A = 1) 

According to the classical picture the isotropic model (1) can be realised in two different 
phases: for /3 < 4 the ground state is antiferromagnetic while for /3 > 4 the competition 
between nearest and next-to-nearest neighbours leads to helical ordering with the helix 
wavevector Q: cos Q = -1/4/3. Our purpose is to investigate the role of quantum 
fluctuations for /3 3 4 in one dimension. We start with the transition point. One can 
expect the fluctuation effects at /3 = 4 to be stronger than those inside the anti- 
ferromagnetic phase due to additional softening of the one-particle spectrum, and one 
can also expect power law divergences of quantum corrections to arise. A simple way to 
check this is to apply a bosonisation scheme [ 5 , 6 ,  181 via the Dyson-Maleev trans- 
formation. The Hamiltonian becomes 

where vk = V 2 k .  Two-boson fields appear as a reflection of antiferromagneticshort-range 
ordering: the neighbouring spins on even and odd sites are linked by different types of 
bosons. The formal non-Hermitity of (3) does not introduce problems since later we 
shall be interested only in the vertex renormalisation on resonance. The effective long- 
wavelength version of ( 3 )  is obtaining by diagonalising the quadratic form via a unitary 
transformation and passing to the low-energy limit in fourfold vertices. The result is 
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Figure 2. Diagrams representing the vertex renormalisation at the critical point. Full and 
broken lines represent propagators of the a- and b-type bosons, respectively. 

Here &k = (sin2 k ) / 2  and 

where 

The second-order correction to one of the vertices is presented graphically in figure 2 .  
The corresponding analytical calculations lead to the following result: all the divergent 
terms in the ‘horizontal’ and ‘vertical’ diagrams cancel each other thus leading only to 
finite (small for S + 1) corrections. Mathematically, this happens because the difference 
between the divergent terms in ‘horizontal’ and ‘vertical’ channels, opposite in sign, is 
proportional to 

fn, dP 

which is finite for k +  0, in contrast to the situation in two dimensions when this 
integral (with an additional factor of p in numerator) is logarithmically divergent (see 
section 5 ) .  We believe this result to be correct for all spin values independently of 
the parity of 2S, since, formally, p = 4 corresponds to the infinite coupling constant 
g = 2 s - ’  (1 - 4p)-’/2 in the O(3) a-model and the topological &term turns out not to 
be essential. Thus, the gapless critical behaviour at p = 4 with the low-temperature 
specific heat C - Til2 survives in the presence of fluctuations. When reaching this point 
from the antiferromagnetic phase, the dynamically generated mass gap for integer S: 
A - g-’ e-2n/g disappears due to the pre-exponential factor. 

The next step is to find the instabilities developing below the critical point. First of 
all the one-particle (magnon) spectrum is decreasing below zero at /3 > 4, indicating the 
transition into the helical ground state. The classical excitation spectrum above it, 

contains three Goldstone modes-at k = kQ, the ordering wavevector, and k = 0. 
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Another possible candidate to occur among the instabilities is that leading to a spon- 
taneous dimerisation. According to Haldane [15], the dimer order parameter for S = f 
is expressed via spin variables as 

(S,+S,+I - S,f_lS,) = (-1)”igl. (7) 
In terms of bosonic variables the appearance of 1 g 1 means the condensation of a two- 

particle bound state leading to the appearance of an anomalous average in the form 
(alb:,) = -iAk sin k with Ak = A - k ,  We can take 

In order to check whether this instability actually occurs one needs to solve these 
equations for the corresponding two-particle Green functions demanding the bare 
vertices to be odd in the wavevectors. There is only one vertex in (3) fitting this 
requirement 

;k+E\/,/ a + f P  1 
= - - sin k sin p .  

S rock. p, 6 )  = 
E - f k ”  a - f P  

The corresponding Dyson equations are of the ladder type and involve in addition 
to the ‘normal’ full vertex T(k, p, 6) also the anomalous one 

The full and broken lines denote Green functions for the a and b magnons, respect- 
ively. 

The solution of (9) and (10) gives the two branches of the two-particle collective 
excitations. For /3 > f both solutions have a gap and a finite decay width, while at the 
critical point one of them turns out to be real and gapless near 6 = 0: 

For /3 > f, E becomes negative at 6 = 0 initiating the development of the instability. 
We have checked that r = -f for the solution (11) and r - sin k sinp. This implies that 
(aLbik) - sink and (aLbik) = -(akb-k),  or, equivalently (a:bik) = -iAk sink with 
k k  = A - k .  Thus we have shown that /3 = 4 is also a critical point with respect to a 
spontaneous dimerisation. 

Our next aim is to prove that in the presence of zero-point vibrations the helical state 
ceases to be a local minima and shifts to a dimer state which turns out to be the only 
stable ground state for /3 > i. Basically, the helical ordering implies the breaking of 
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SO(3) symmetry, that is the order parameter space is doubly connected. The above 
analysis shows that the discrete Z 2  symmetry is also broken for p > 4. By making the Z2 
degree of freedom ‘frozen’ we come to a simply-connected order parameter space S3 
coinciding with that in the O ( 4 )  a-model where it is widely believed that fluctuations 
completely restore the symmetry. Supposing that this restoration really occurs, we are 
thus left with only a discrete broken symmetry, that is with a dimer state. 

The instability of helical configuration can be ascertained also by direct calculations 
without appeal to the analogy with the a-model. To do this we start with the classical 
helical configuration and use the bosonisation procedure based on the Dyson-Maleev 
transformation. The low-energy theory which arises describes three interacting massless 
bosons and contains two different types of anharmonic terms. Those linking the exci- 
tations with the momentum near 0 and near * Q ,  the helical ordering wavevector, are 
of the same form as in spin nematics with integer S [18] and the corresponding coupling 
constant undergoes a logarithmic renormalisation, while those for excitations with the 
momentum only near 0 or only near ? Q contain additional small factors (in complete 
analogy with the situation in the XY-model) and can be omitted in the low-energy limit. 
This situation differs from that in spin nematics with half-integer S [18] where the 
bare excitations are also three massless bosons, but where the renormalisation group 
equations are organised in such a way that one boson field decouples from the other two, 
thus leading to a critical (gapless) behaviour. 

Denoting the bosonic variables near 0 as ck and those near kQ as dk ,  the effective 
low-energy Hamiltonian can be written in the following form: 

where &k = 1 k l ,  c = [(I + 4p)/4/3](16P2 - 1)lI2 and 

The one-loop renormalisation group equation is obtained immediately 

g2 -- - 2--. 
d In l / k  2n 

d g  

As expected, it coincides with that in the O(4) a-model. 

3. The anisotropic case 

The classical phase diagram of ( 1 )  for arbitrary A was discussed in the introduction. Our 
aim is to show that new phases appear on this diagram when quantum effects are taken 
into account. In this section the S = t model in one dimension will be considered. We 
start with the lability line of the ferromagnetic phase. To the left of this line the ground 
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state is being realised in an Ising-like ferromagnet. The bosonic version of the spin 
Hamiltonian (1) is obtained immediately via the Dyson-Maleev transformation: 

For /3 = softening first occurs at k = JC, while for /3 > 4 this happens at k = Q,  the 
helix vector: cos Q = - 1/4/3. At /3 = 0 the critical point A = - 1 reinforces the isotropic 
ferromagnet and the vertex functions satisfy the Adler principle, that is they tend to zero 
in the limit of zero momentum. Hence, all the bound states with an arbitrary number of 
magnons also soften only at the critical point, thus leading to a first-order (but without 
hysteresis) transition from the Ising-type ferromagnet to the X Y  antiferromagnet. The 
situation changes when we switch to the next-to-nearest neighbour exchange. Now the 
critical value Ac reinforces the anisotropic system and the attractive interaction between 
magnons survives in the limit of zero momentum. As a result the bound states soften 
before the critical value Ac is achieved. For S = 4 only two-particle excitations act on the 
physical subspace and only two-particle bound states are believed to be relevant. 

The two-particle bound-state spectrum was obtained in a standard manner as a pole 
of the two-particle Green function. As expected, it softens earlier than the one-particle 
instability comes for all /3 except /3 = i where we run into 'hidden' symmetry. The 
peculiarity of the S = 4 problem is that for all /3 between0 and& the two-particle instability 
occurs first at the total momentum k = ~ J C ,  while for /3 > 4 this first happens at k = 
+-2Q (reminding the reader that cos Q = -1/4/3, that is Q = 2x/3 at /3 = i). The exact 
expression for the critical value of A : A = Ag2) is sufficiently complicated that we restrict 
ourselves only with the limiting cases 

We believe that for S = 4 the two-particle instability is not accompanied by insta- 
bilities of higher order, that is the transition is continuous and small condensates, gk = 
(alatk+2n) = (a:alk) orgk  = (ata'k+zQ), withgreal arise while crossing the critical line 
Ai2)(@) for /3 < 4 or /3 > i, respectively. Some calculations favouring this proposal are 
presented in appendix 1. 
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The appearance of a non-zero anomalous condensate signifies the breaking of a 
continuous symmetry with respect to rotations in the XY-plane, since, for example, 

For /3 < f the order parameter space is isomorphic to 

V =  2 2  €3 Ti 

where T1 is a projective line, or equivalently, a circle with opposite points identified. 
The latter restriction is connected with the ‘nematic’-type ordering in the XY-plane: 

For /? > f the order parameter space in the ‘superfluid’ phase is a little more compli- 
cated. In addition to the Z2 €3 T I  degree of freedom an additional twofold discrete 
degeneracy connected with the ‘freezing’ of a chiral degree of freedom appears. The 
order parameter space is now isomorphic to 

(S,) = (S,) = 0. 

v, =Z2€322€3T1.  (20) 

From the formal point of view the appearance of the new phases may be regarded as 
the splitting S + Z2 @Ti of the broken degrees of freedom in the XY antiferromagnetic 
and helical states. 

Obviously long-range nematic ordering in the XY plane is impossible in one dimen- 
sion due to Coleman’s theorem. However, orientational ordering and, hence, a massless 
branch of excitations survives in the presence of quantum fluctuations. 

The appearance of a condensate also initiates the density of particles f k  = (a:ak) to 
be non-zero. The total density does not diverge since one-particle excitations do have a 
finite gap. Hence, while crossing the critical line Ag’)(P) the magnetisation changes 
continuously: 

This justifies the notation of ‘superfluid’ ferromagnetic for the new phases. 
The case /? = & needs a separate discussion. This value of /? is singled out since the 

Hamiltonian (1) can obviously be rewritten as H = i& HI,  where each HI describes a 
triad of equivalently interacting spins: 

HI = k i , /  + h/ , /+ l  + h/-1,/+1. (21) 
For S = 4 H,, in turn, can be rewritten in terms of a total spin of a triad and its Z- 

projection: 

HI = - $(2 + A) + f [ S ( S  + 1) + (A - l)S:]. (72) 
One can immediately make sure that the ferromagnetic state (s = 3, S, = +4) mini- 

misesH,forA < -&, while for A > f the dimerstate (2) constructedfrom non-interacting 
singlets ( 3  = 4, S, = *&) appears to be the ground state. Thus the intermediate ‘super- 
fluid’ phase does not realise at /3 = &. This is also seen from equation (17). The first-order 
type of the transition makes it unreasonable to expect to detect the dimerisation by 
looking for an instability which could be revealed in the appearance of a small-dimer 
condensate, as it was in the isotropic case. On the other hand, the appearance of the two 
independent gapless collective excitations at the critical points at k = 27c and 47c/3, can 
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1 a 

Figure 3. The proposed T = 0 phase diagram for the S = model (1) in one dimension. The 
regions of ‘superfluid’ phases are shown hatched. 

a a”  oi 
Figure 4. The Z-magnetisation along the line a’a in figure 3. 

be regarded as a manifestation of an additional ‘hidden’ symmetry at /3 = 1/2. I believe, 
though cannot prove by direct calculations, that the massless excitations will interact 
with each other at A > -2 inducing a smearing of the 120” triangular plane ordering 
even in the anisotropic case, that is the dimer state appears to be the only stable ground 
state for all A > -2. 

Analytical calculations are available only in the vicinity of the line ACD in figure 1. 
The locations of the other boundaries of the new phases are not known exactly. We 
believe that in one dimension the entire line BE is split, and the ‘superfluid’ ferromagnetic 
states exist for all 1 A 1 < 1, even in the vicinity of the isotropic model. 

The proposed phase diagram for S = h is presented in figure 3. Some remarks 
concerning the line AE are made in appendix 2. This phase diagram differs significantly 
from the classical one: the helical state completely disappears when quantum fluctuations 
are included. Instead, two ‘superfluid’ ferromagnetic states appear, with the dimer state 
between them. The dimer state also serves as an intermediate state between the Ising- 
like antiferromagnet and the upupdown-down spin configuration. The proposed 
behaviour of the magnetisation M ,  along the arbitrarily chosen line aa’ is presented in 
figure 4. 

4. Other spin values 

In this section some arguments will be presented, both qualitative and quantitative, 
favouring the proposal that the main conclusions of the two previous sections, such as 
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dimerisation and the appearance of 'superfluid' phases, remain unchanged for S > t .  
However, instead of two-particle instabilities driving the situation in the case of S = f ,  
the higher-order instabilities connected with the condensation of 4s  particle bound states 
will lead to dimer and superfluid phases in the sp in3  model (1). The simplest way to 
understand this is to take the Ising limit A + m. One can immediately make sure that at 
the classical first-order transition point p = f a  set of dimerised states with q = [ 12Is [34] s, 
where 

and 9 is arbitrary, satisfy the ground state in addition to the NCel and u p u p d o w n -  
down spin configurations. The dimer order parameter can be written in the following 
manner: 

Clearly, the instability leading to dimerisation is connected with the condensation of the 
4s  particle bound states. 

Another confirmation is given by the analytical calculations performed in the neigh- 
bourhood of the point C in figure 1 for a model with S = 1. We have shown (the 
calculations are presented in appendix 3) that an attractive interaction between the two- 
particle bound states appears at the deviation from the p = 1 transition point, resulting 
in the four-particle bound-state condensation with total momentum k = 0 for /3 < 4 and 
k = 4Q for p > t .  The transition is again continuous, and 'superfluid' phases do have a 
non-zero, though non-nominal, net magnetisation in the z-direction. 

Unfortunately, in contrast to the S = 4 case we have failed to find an exact ground- 
state wavefunction anywhere inside the dimer phase. The suggested ground state for 
p = &--the state constructed purely from the singlet configurations for nearest neigh- 
bours, that is with q = [12] [34] [56] . . ., where 

- - -  

(the notation is obvious)-appears to be an eigenstate of (1) only for isotropic model. 
However, this state does not minimise H/  and we thus cannot prove that non-interacting 
singlets form a true ground state even in the isotropic case. An attempt was made to 
construct a simple dimer ground state at the critical point C ( p  = 1, A = -a), but the 
only state minimising all the H I  on a circle containing four spins appeared to be the 
ferromagnetic one. Hence, the dimer ground state at this first-order transition point 
cannot be constructed from non-interacting dimers, in contrast to the S = 4 case. 

5. Higher spatial dimensions 

One generally expects antiferromagnets in dimensions of two and more to possess long- 
range order in the ground state, at least for sufficiently large S. Ioffe and Larkin pointed 
out that this is not necessarily so for the isotropic model (1) in two dimensions [19]. In 
reality, the additional softness of the magnon excitations at the critical point /3 = pc 
(8, = a in the quasiclassical consideration) leads to a logarithmically divergent per- 
turbation theory for the coupling constant in the ZD case (see section 2). This being the 
case it is natural to propose that fluctuations completely restore the continuous symmetry 
in the neighbourhood of the critical point for arbitrary S. At the same time zero-point 
vibrations are believed to be small outside the critical region and not to wash away the 
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planar helical ordering. The dimerisation, therefore, turns out to be a purely one- 
dimensional phenomena for the model considered?. In contrast , ‘superfluid’ states exist 
in higher dimensions as well. In reality, these phases appear in the one-dimensional 
phase diagram as a result of the attractive interaction between the massless bosons. 
Evidently, this interaction also ensures the condensation of bound states in two dimen- 
sions. The only difference is that the 2~ critical line A:*)( /3), apart from the one-particle 
instability line Ac( /3) only up to exponentially small terms. For S = 4 

[Ac - 4 exp( -x/16P2 ) p e l  

In the 3~ case the possibility of forming a bound-state condensate depends on the 
strength of the interaction potential. Nevertheless, the ‘superfluid’ phase definitely 
arises in the neighbourhood of the point B ( p  = 4, A = -S) in figure 1 since the one- 
particle spectrum demonstrates here an additional softness: 

&k = i(1 -t Vk)* - k4 .  (27) 
This ensures the bound-state condensation prior to the one-particle instability and, 
hence, a continuous transition with the intermediate ‘superfluid’ phase even in three 
dimensions. 

6. Summary 

The present paper was devoted to the study of how the quantum fluctuations influence 
the ground state of antiferromagnets with competing interactions. The main results of 
this work are the following: 

(i) The collinear and non-collinear phases in the ID isotropic model (1) ( A  = 1) are 
separated by the critical point /3 = pc ( P c  = a in the quasiclassical case). The excitation 
spectrum at this point contains two gapless branches (both quadratic in k)  which are not 
seriously affected by fluctuations. 

(ii) The critical point /3 = pc simultaneously appears to be the point of instability 
against spontaneous dimerisation. For /3 > pc  quantum fluctuations smear out the classi- 
cal helical ordering and the dimer state turns out to be the only stable ground state. 

(iii) The new phases which we call ‘superfluid’ ferromagnetic appear in the general 
phase diagram of (1) in one or two dimensions for any non-zero /3 except /3 = i. These 
phases are characterised by both the non-zero, though non-nominal, 2-magnetisation 
and the nematic-type ordering in the XY-plane. In the ID case zero-point vibrations 
smear out the long-range nematic ordering but orientational ordering survives. In three 
dimensions the ‘superfluid’ phase definitely exists in the neighbourhood of the point B 
in figure 1. 

A spontaneous dimerisation in one-dimensional systems with a sufficiently strong 
antiferromagnetic next-to-nearest neighbour interaction was first predicted by Haldane 
[15]. He considered the model with an anisotropic (A + 1) interaction for nearest 

t In principle, dimerisation can arise inside the phase with unbroken continuous symmetry. 
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neighbours and an isotropic interaction for next-to-nearest ones. This model differs 
from (1) in the anisotropic case. We examined the lability line of the ferromagnetic 
phase for the Haldane model and found that for p < d that one-particle instability occurs 
at the isotropic line A = - 1. Hence, a preliminary two-particle instability is not realised 
and, as a consequence, no ‘superfluid’ phase appears for p < f. In contrast, for /3 > f 
magnon instability occurs at the anisotropic points A, = -[1 + (4/3)2]/8p and the solu- 
tion of the two-particle problem for S = 2 immediately points out the instability against 
the formation of the anomalous condensate to occur first. For j3 close to 4 this happens 
at 

Ai2) = A,  - 144(4p - 1)3 (28)  
and the condensate has the total momentum 2k,, where cos k ,  = - 1/4p. Thus, only one 
type of ‘superfluid’ state is realised in the Haldane model. 

The dimerisation transition in the S = 4 isotropic model was detected in a numerical 
experiment [20 ] .  The situation in the anisotropic case is less clear. Quite recently 
Tonegawa and Harada reported [21] their numerical investigations of (1) for 0 < A < 1. 
They did not detect any intermediate phase between X Y  and the dimer ones. Though it 
has been proved in this paper that the ‘superfluid’ phases definitely exist only in the 
vicinity of the two-particle instability line and the other boundaries of these phases are 
not known exactly, I, nevertheless, believe in the phase diagram of figure 3 and hope 
that further numerical results will clarify the situation. 
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Appendix 1 

Some calculations are presented here favouring the proposal that for S = i the two- 
particle instability is not accompanied by instabilities of higher order. Namely, we shall 
check the possibility for a preliminary instability due to the interaction between one- 
particle and collective modes to occur. To do this one must calculate the corresponding 
bare vertex. The case for /3 s 4 will be considered. The diagram of interest is that 
representing the interaction between a magnon with k = Q, the one-particle instability 
wavevector (full line), and the collective mode with the total momentum 2 n  (wavy line): 

(A1.l) 

For zero total frequency rh3!2n is given by the following expression: 

= @ E12n - Q l E 2 n  - Q (A1.2) 

where O&n-Q stands for the numerator in the total two-particle vertex function 
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r g & n - Q  = -@)!2n_Q/n (Q is the total frequency of two magnons) and E2n-Q = 
= 4 (A, - A) is the magnon excitation energy for k = Q. The calculation of @ demands 
a solution of the integral equation for the total two-particle vertex function. The result 
is 

(A1.3) @)'2n-Q = -9(4 - /3)3 
that is 

(A1.4) 

Solving then the integral equation for the total vertex we obtain the condition 
for the three-particle instability to occur. It is 

6(4 - /3)3 1 
A c - A  N 

1 =  -E I;' 

where 

(A1.5) 

(A1.6) 

and Ekis the two-particle bound-state energy. By comparing this result with that leading 
to equation (17) we may be certain that the preliminary three-particle instability does 
not occur since Ai2) given by (17) is the solution of the equation identical to (A1.5) but 
without E p q  term in (A1.6). 

Appendix 2 

A qualitative explanation is presented here of how the transition occurs on the line AE 
on the general S = 4 ID phase diagram. The aim is to ascertain the grounds for the 
appearance of non-zero value of S ,  if one starts from the XY-phase. The fermionic 
language will be useful in this context. By applying the Jordan-Wigner transform- 
ation [22] one can rewrite the spin Hamiltonian in terms of fermionic variables. To the 
right of the line ACD the one-particle energy & k  = - A ( l  + /3) + v k  + /3v2k is negative 
for k close to n and the density of fermions is non-zero. The Mermin-Wagner theorem 
demands that 

or, equivalently, that pF = i n .  This is achieved owing to the increase in the Green 
function numerator while approaching the Fermi level [23]t. The excitation spectrum 
can be divided into two parts: excitations in the vicinity of the Fermi level which form 
the Luttinger liquid, and the remaining part which is usually omitted in the macroscopic 
treatment. It is well known that, inspite of the attractive interaction between ID massless 
fermions at the Fermi level, the bound state does not appear since the initial bare 
interaction experiences an effective logarithmic screening in the zero-sound 

t It will be recalled that anywhere in the XY-phase, except for the point A = /3 = 0, that the excitations are 
free bosons but not free fermions [24]. 
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channel [23]. In contrast, the attractive interaction between excitations outside the 
Luttinger liquid region does not experience a zero-sound-type renormalisation and 
exactly these excitations ensure that the superfluid transition occurs, since while 
approaching the critical lines AB or BC the spin wave velocity goes to zero and, hence, 
the applicability region of the Luttinger liquid theory diminishes. The two-particle 
condensation changes the spectrum 'far' from the Fermi level. The continuity condition 
then demands a simultaneous change in the Fermi momentum, which, in turn, leads to 
the violation of the condition 

and to the appearance of non-zero Z-magnetisation. 

Appendix 3 

In this appendix it will be shown that at the deviation from /3 = 4 an attraction between 
two-particle bound states appears for S = 1, leading to a formation of a four-particle 
anomalous condensate. The first step to do this is to introduce an additional bosonic 
field connected with the collective mode. This procedure was discussed in detail in [ 181. 
For the purpose discussed it is convenient to link spin operators with a pair of bosons 
via the following transformation: 

S,  = 1 - b'b - 2ata 

S ,  = f i ( b t a  + Ub) 

S -  = f i ( a t b  + b 'U)  

(A3.1) 

At T = 0 this transformation is exact for the same reasons as the Holstein-Primakoff 
one: it fits the commutation relations and obeys the constraint g2 = S(S + 1) on the 
physical subspace (formed by the vacuum state and the states with one excited boson of 
type a or b), in addition, matrix elements between physical and non-physical states are 
equal to zero. The b-type excitations change S, to unity and thus correspond to simple 
spin waves, while a-type excitations overturn single spins and, hence represent two- 
particle collective excitations. 

The determation of the a-type boson Green function demands a solution of a ladder- 
type integral equation now due to the presence of cubic anharmonicities. In contrast to 
the case S = 4, two-particle excitations first soften in the vicinity of /3 = 4 only at k,  = 
21d - 2Q (note that the total momentum value is shifted by 2n  in this approach). The 
instability is realised at 

3 v 3 - 5  
7 - 3 v 3  

Ai2) = A,  - 2 (  (/3 - i )4 ,  

Near its pole the a-type boson Green function is as follows: 

L 
G, = 

--Ea + Q 
(A3.2) 

where E6 = $(a - k,)* and 2 - (/3 - i)*. 
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The next step is to construct the vertex function describing the interaction between 
gapless collective modes. This problem is rather complicated because of the presence of 
odd anharmonicities. Nevertheless I am convinced by direct calculations that at least 
near p = t this interaction is of attractive type: for p > 4 the attraction leads to the 
instability against bound-state condensation with the total momentum 2k, the difference 
I Ai4) 1 - 1 AL2) I is of the order of Z4(p - 4)4 ,  while for /3 < 4 the earliest instability is due 
to the four-particle bound-state condensation with k = 0, the difference I Ai4) 1 - 
1 AL2) I is now proportional to Z4(p - 4)2.  

One can see that if Z-factors are not taken into account, then the situation for S = 1 
repeats that for S = 4 with the only difference being that the role of one-particle exci- 
tations is now played by the two-particle collective modes. 
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